Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Waste Manag ; 176: 169-191, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301601

RESUMEN

A range of issues related to sustainability in the agrifood industry have spurred interest in mass production of insects as human food and animal feed alternatives. This rapidly evolving sector addresses several challenges, including the management of food waste or agrifood by-products and the production of alternative animal proteins demonstrating low environmental impacts that improve sector circularity. The mass production of insects on agrifood processing wastes or by-products represents an opportunity to address these challenges. While the production of insects offers prospects for sustainable protein production, a major side stream is the production of frass or larval excrement including uneaten feed and chitin-rich exuviae (derived from multiple larval moults). The production of each tonne of edible insects generates 2 to 4 tonnes of frass with an interesting potential in agriculture versus traditional organic amendments (compost, manure, biochar). This review aims to demonstrate the characteristics of frass, its common harvest and conditioning methods, its optimal application rates for planting crops, the mechanisms by which it can protect plants against biotic and abiotic stresses and demystify the risks and potential associated with its application in agriculture. The characteristics of frass are compared with those of conventional fertilizers or other. This report also compiles the Canadian, US and European regulatory frameworks as a novel plant fertilizer and aims to pave the way for future research necessary for its valorization in plant production.


Asunto(s)
Estiércol , Eliminación de Residuos , Animales , Humanos , Canadá , Insectos , Productos Agrícolas , Fertilizantes/análisis , Suelo
2.
PeerJ ; 11: e14699, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755869

RESUMEN

The spatial heterogeneity of urban landscapes, relatively low agrochemical use, and species-rich floral communities often support a surprising diversity of wild pollinators in cities. However, the management of Western honey bees (Apis mellifera L.) in urban areas may represent a new threat to wild bee communities. Urban beekeeping is commonly perceived as an environmentally friendly practice or a way to combat pollinator declines, when high-density beekeeping operations may actually have a negative influence on native and wild bee populations through floral resource competition and pathogen transmission. On the Island of Montréal, Canada there has been a particularly large increase in beekeeping across the city. Over the years following a large bee diversity survey ending in 2013, there was an influx of almost three thousand honey bee colonies to the city. In this study, we examined the wild bee communities and floral resources across a gradient of honey bee abundances in urban greenspaces in 2020, and compared the bee communities at the same sites before and after the large influx of honey bees. Overall, we found a negative relationship between urban beekeeping, pollen availability, and wild bee species richness. We also found that honey bee abundance had the strongest negative effect on small (inter-tegular span <2.25 mm) wild bee species richness. Small bee species may be at higher risk in areas with abundant honey bee populations as their limited foraging range may reduce their access to floral resources in times of increased competition. Further research on the influence of urban beekeeping on native and wild pollinators, coupled with evidence-based beekeeping regulations, is essential to ensure cities contain sufficient resources to support wild bee diversity alongside managed honey bees.


Asunto(s)
Ecosistema , Flores , Animales , Abejas , Polen , Apicultura , Ciudades
3.
PeerJ ; 5: e3051, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28286711

RESUMEN

Urbanization is one of the major anthropogenic processes contributing to local habitat loss and extirpation of numerous species, including wild bees, the most widespread pollinators. Little is known about the mechanisms through which urbanization impacts wild bee communities, or the types of urban green spaces that best promote their conservation in cities. The main objective of this study was to describe and compare wild bee community diversity, structure, and dynamics in two Canadian cities, Montreal and Quebec City. A second objective was to compare functional trait diversity among three habitat types (cemeteries, community gardens and urban parks) within each city. Bees were collected using pan traps and netting on the same 46 sites, multiple times, over the active season in 2012 and 2013. A total of 32,237 specimens were identified, representing 200 species and 6 families, including two new continental records, Hylaeus communis Nylander (1852) and Anthidium florentinum (Fabricius, 1775). Despite high community evenness, we found significant abundance of diverse species, including exotic ones. Spatio-temporal analysis showed higher stability in the most urbanized city (Montreal) but low nestedness of species assemblages among the three urban habitats in both cities. Our study demonstrates that cities are home to diverse communities of wild bees, but in turn affect bee community structure and dynamics. We also found that community gardens harbour high levels of functional trait diversity. Urban agriculture therefore contributes substantially to the provision of functionally diverse bee communities and possibly to urban pollination services.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...